Classification of Medical Images using Non-linear Distortion Models

نویسندگان

  • Daniel Keysers
  • Christian Gollan
  • Hermann Ney
چکیده

We propose the application of two-dimensional distortion models for comparisons of medical images in a distance-based classifier. We extend a simple zero-order distortion model by using local context within the compared image parts. Vertical and horizontal image gradients as well as small sub images are used as local context. Taking into account dependencies within the displacement field of the distortion by using a pseudo two-dimensional hidden Markov model with additional distortion possibilities further improves the error rate. Using the methods presented in this work, the previous best error rate of 8.0% on the used medical data could be considerably reduced by about one third to 5.3%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

Accuracy and precision of measurements obtained from conventional cephalograms and CBCT scan in orthodontics linear diagnostic measurements

Background and Purpose:  Due to the important role of imaging in the diagnosis and treatment plan in orthodontics, CBCT (Cone Beam Computed Tomography) images because of their three-dimensional nature, can minimize the disadvantages of two-dimensional images such as magnification, distortion, or superimposition. The purpose of this study was to evaluate the accuracy of conventional cephalograms...

متن کامل

Fabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System

Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...

متن کامل

Estimating Tumor/Non-Tumor Uptake from Radiolabeled Monoclonal Antibodies using Scintigraphic Images and Dissecting the Animal Models

Introduction: Biodistribution study in animal models bearing tumors is one of the most important procedures in evaluation of fractional uptake of radiopharmaceuticals in the tumor and non-tumor organs. The aim of this study was to develop a new software-based method to determine activities that accumulate in the main organs as well as the tumor based on scintigraphy images, thereby obviating th...

متن کامل

Classification of Chest Radiology Images in Order to Identify Patients with COVID-19 Using Deep Learning Techniques

Background and Aim: Due to the important role of radiological images for identifying patients with COVID-19, creating a model based on deep learning methods was the main objective of this study. Materials and Methods: 15,153 available chest images of normal, COVID-19, and pneumonia individuals which were in the Kaggle data repository was used as dataset of this research. Data preprocessing inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004